${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
${(x/4)^3}$
${(4x)^3}$
$8{x^3}$
એકપણ નહીં
${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$
જો ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ અને ${b^2} = ac$ તો $x + z = $
સમીકરણ $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ નો ઉકેલ મેળવો.
જો ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$ તો $x =$
જો $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ તો $3{x^2} + 4xy - 3{y^2} = $