જો ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ તો $ x$ ની કેટલી કિમતો મળે કે જે ${\pi \over 4}$ નો ગુણિત છે.
$4$
$12$
$3$
એકપણ નહી.
જો $y = {\log _a}x$ એ વ્યાખ્યાતીત હોય તો $'a'$ એ . . . હોવો જોઈએ.
જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .
ધારો કે $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c,$ $a, b, c \in Z$ પુર્ણાકો છે.$e=\sum_{n=0}^{\infty} \frac{1}{n !} $ હોય તો $a^2-b+c$ ની કિમંત મેળવો.
જો ${\log _4}5 = a$ અને ${\log _5}6 = b $ તો ${\log _3}2= . . . .$
જો ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ તો $x$ નો અંતરાલ મેળવો.