If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be

  • A

    $2$

  • B

    $3$

  • C

    $3.5$

  • D

    $\pi $

Similar Questions

The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is

  • [KVPY 2017]

If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true

${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $

If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct