If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
$2$
$3$
$3.5$
$\pi $
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
If ${\log _5}a.{\log _a}x = 2,$then $x$ is equal to
If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval