If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be

  • A

    $2$

  • B

    $3$

  • C

    $3.5$

  • D

    $\pi $

Similar Questions

If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct

If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true

If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval

Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that  $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$  $2 x-y=\log _b(\sqrt{1080}),$  then $4 x+5 y$ is equal to. . . . 

  • [IIT 2024]