$\log ab - \log |b| = $
$\log a$
$\log |a|$
$ - \log a$
None of these
If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to
If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then
The value of ${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}$ is
Let $n$ be the smallest positive integer such that $1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \geq 4$. Which one of the following statements is true?
If ${\log _{12}}27 = a,$ then ${\log _6}16 = $