$\log ab - \log |b| = $
$\log a$
$\log |a|$
$ - \log a$
None of these
The sum of all the natural numbers for which $log_{(4-x)}(x^2 -14x + 45)$ is defined is -
If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
The product of all positive real values of $x$ satisfying the equation $x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16}$is. . . . .