The number ${\log _2}7$ is

  • [IIT 1990]
  • A

    An integer

  • B

    A rational number

  • C

    An irrational number

  • D

    A prime number

Similar Questions

The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is

  • [IIT 2012]

Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is

  • [KVPY 2009]

${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $

The sum of all the natural numbers for which $log_{(4-x)}(x^2 -14x + 45)$ is defined is -

The value of $(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ is equal to

  • [JEE MAIN 2020]