જો ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}} $ તો આપલે પૈકી . . . સત્ય છે.
$xyz = 1$
${x^a}{y^b}{z^c} = 1$
${x^{b + c}}{y^{c + a}}{z^{a + b}} = 1$
ઉપરોક્ત બધાજ
વાસ્તવિક સંખ્યા $k$ ની કેટલી કિમત માટે વાસ્તવિક સહગુણકો ધરાવતા સમીકરણ ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ નો માત્ર એક્જ ઉકેલ મળે.
જો $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ તો
જો ${\log _{10}}x = y,$ તો ${\log _{1000}}{x^2}= . . .$ .
જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
જો $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$ તો $xyz = . . . .$