If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true

  • A

    $xyz = 1$

  • B

    ${x^a}{y^b}{z^c} = 1$

  • C

    ${x^{b + c}}{y^{c + a}}{z^{a + b}} = 1$

  • D

    All of These

Similar Questions

If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then

The number of solution pairs $(x, y)$ of the simultaneous equations $\log _{1 / 3}(x+y)+\log _3(x-y)=2$ $2^{y^2}=512^{x+1}$ is

  • [KVPY 2017]

If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then

Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is

If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to