If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then
${x^y}.{y^z}.{z^x} = 1$
${x^x}{y^y}{z^z} = 1$
$\root x \of x \,\root y \of y \root z \of z = 1$
None of these
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
The number ${\log _{20}}3$ lies in
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
If $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$then which of the following is equal to $1$
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to