If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then
${x^y}.{y^z}.{z^x} = 1$
${x^x}{y^y}{z^z} = 1$
$\root x \of x \,\root y \of y \root z \of z = 1$
None of these
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to
Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is
Let $\log _a b=4, \log _c d=2$, where $a, b, c, d$ are natural numbers. Given that $b-d=7$, the value of $c-a$ is
If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be
The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$