If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
$k$
${1 \over 5}$
$5$
$(b)$ and $(c)$ both
Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$ $2 x-y=\log _b(\sqrt{1080}),$ then $4 x+5 y$ is equal to. . . .
If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct
If $3^x=4^{x-1}$, then $x=$
$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is