If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to

  • A

    $k$

  • B

    ${1 \over 5}$

  • C

    $5$

  • D

    $(b)$ and $(c)$ both

Similar Questions

Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.

  • [JEE MAIN 2023]

The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is

If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval

Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that  $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$  $2 x-y=\log _b(\sqrt{1080}),$  then $4 x+5 y$ is equal to. . . . 

  • [IIT 2024]