If ${\log _{12}}27 = a,$ then ${\log _6}16 = $
$2.{{3 - a} \over {3 + a}}$
$3.{{3 - a} \over {3 + a}}$
$4.{{3 - a} \over {3 + a}}$
None of these
The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is
For $y = {\log _a}x$ to be defined $'a'$ must be
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be
The number ${\log _{20}}3$ lies in