If ${\log _{12}}27 = a,$ then ${\log _6}16 = $
$2.{{3 - a} \over {3 + a}}$
$3.{{3 - a} \over {3 + a}}$
$4.{{3 - a} \over {3 + a}}$
None of these
If ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ the number of digits in ${3^{12}} \times {2^8} $ is
If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
If ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0,$ then $x$ is equal to
The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is
Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is