If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to

  • A

    $2$

  • B

    $3$

  • C

    $5$

  • D

    $7$

Similar Questions

The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is

If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct

If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is

If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then

The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is