If ${a^2} + 4{b^2} = 12ab,$ then $\log (a + 2b)$ is
${1 \over 2}[\log a + \log b - \log 2]$
$\log {a \over 2} + \log {b \over 2} + \log 2$
${1 \over 2}[\log a + \log b + 4\log 2]$
${1 \over 2}[\log a - \log b + 4\log 2]$
If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is
Solution set of equation
$\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ is $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ then the value of $(a + b)$ is
If ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, then relation between $a$ and $b$ will be
The number of real values of the parameter $k$ for which ${({\log _{16}}x)^2} - {\log _{16}}x + {\log _{16}}k = 0$ with real coefficients will have exactly one solution is
If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to