If ${a^2} + 4{b^2} = 12ab,$ then $\log (a + 2b)$ is
${1 \over 2}[\log a + \log b - \log 2]$
$\log {a \over 2} + \log {b \over 2} + \log 2$
${1 \over 2}[\log a + \log b + 4\log 2]$
${1 \over 2}[\log a - \log b + 4\log 2]$
The value of ${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}$ is
If $x = {\log _5}(1000)$ and $y = {\log _7}(2058)$ then
The value of $\sqrt {(\log _{0.5}^24)} $ is
Let $a , b , c$ be three distinct positive real numbers such that $(2 a)^{\log _{\varepsilon} a}=(b c)^{\log _e b}$ and $b^{\log _e 2}=a^{\log _e c}$. Then $6 a+5 b c$ is equal to $........$.
If ${\log _{12}}27 = a,$ then ${\log _6}16 = $