If $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is the solution of $4 \cos \theta+5 \sin \theta=1$, then the value of $\tan \alpha$ is
$\frac{10-\sqrt{10}}{6}$
$\frac{10-\sqrt{10}}{12}$
$\frac{\sqrt{10}-10}{12}$
$\frac{\sqrt{10}-10}{6}$
Solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$
The number of solutions of the equation $\sin (9 x)+\sin (3 x)=0$ in the closed interval $[0,2 \pi]$ is
Statement $-1:$ The number of common solutions of the trigonometric equations $2\,sin^2\,\theta - cos\,2\theta = 0$ and $2 \,cos^2\,\theta - 3\,sin\,\theta = 0$ in the interval $[0, 2\pi ]$ is two.
Statement $-2:$ The number of solutions of the equation, $2\,cos^2\,\theta - 3\,sin\,\theta = 0$ in the interval $[0, \pi ]$ is two.
General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is