જો $A, B$ અને $C$ એ ત્રણ ગણ હોય તો $A \cap (B \cup C) = . . . $
$(A \cup B) \cap (A - C)$
$(A \cap B) \cup (A \cap C)$
$(A \cup B) \cup (A \cup C)$
એકપણ નહી.
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $P(A \cap B)=P(A) \cap P(B).$
$A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\}$ લો. $A -B$ અને $B-A$ શોધો.
અહી $A =\{1,2,3,4,5,6,7\}$ અને $B =\{3,6,7,9\}$ આપેલ છે. તો ગણ $\{ C \subseteq A : C \cap B \neq \phi\}$ ની સભ્ય સંખ્યા મેળવો.
જો ${N_a} = [an:n \in N\} ,$ તો ${N_5} \cap {N_7} = $
બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =