If $A, B, C$ are three sets, then $A \cap (B \cup C)$ is equal to
$(A \cup B) \cap (A - C)$
$(A \cap B) \cup (A \cap C)$
$(A \cup B) \cup (A \cup C)$
None of these
If $A, B$ and $C$ are any three sets, then $A - (B \cap C)$ is equal to
For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$
Find the union of each of the following pairs of sets :
$A=\{1,2,3\}, B=\varnothing$
Using that for any sets $\mathrm{A}$ and $\mathrm{B},$
$A \cap(A \cup B)=A$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$\left( {A \cap B} \right) \cap \left( {B \cup C} \right)$