જો $A$ અને $B$ વ્યાખ્યાયિત હોય $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y = - x,x \in R\} $,તો
$A \cap B = A$
$A \cap B = B$
$A \cap B = \phi $
એકપણ નહી.
જો બે ગણો $A$ અને $B$ હોય તો $(A -B) \cup (B -A) \cup (A \cap B) $
$A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\}$ લો. $A -B$ અને $B-A$ શોધો.
જો $A = \{2, 3, 4, 8, 10\}, B = \{3, 4, 5, 10, 12\}, C = \{4, 5, 6, 12, 14\}$ તો $(A \cap B) \cup (A \cap C)$ મેળવો.
$V =\{a, e, i, o, u\}$ અને $B =\{a, i, k, u\}$ છે. $V -B$ અને $B -V$ શોધો.
$A =$ [$x:x$ એ $3$ નો ગુણિત છે ] અને $B =$ [$x:x$ એ $5$ નો ગુણિત છે ], તો $A -B$ એ . . . ($\bar A$ એ ગણ $A$ નો પૂરક ગણ દર્શાવે છે )