જો $A$ અને $B$ વ્યાખ્યાયિત હોય $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y = - x,x \in R\} $,તો
$A \cap B = A$
$A \cap B = B$
$A \cap B = \phi $
એકપણ નહી.
બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે ? $ P(A) \cup P(B)=P(A \cup B)$ સત્ય છે ? તમારા જવાબની યથાર્થતા ચકાસો.
જો બે ગણો $A$ અને $B$ હોય ,તો $A - B$ = . . . .
$X \cup Y$ માં $50$ ઘટકો, $X$ માં $28$ ઘટકો અને $Y$ માં $32$ ઘટકો હોય તેવા બે ગણો $X$ અને $Y$ આપેલા છે, તો $X$ $\cap$ $Y$ માં કેટલા ઘટક હશે ?
છેદગણ શોધો : $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $1\, < \,x\, \le \,6\} ,$ $B = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $6\, < \,x\, < \,10\} $