यदि $\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .$. $30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{(30 !)^2}$, है, तो $\alpha \cdot$ बराबर है :
$30$
$60$
$15$
$10$
यदि $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ के प्रसार में $\mathrm{x}^{30}$ का गुणांक $\alpha$ है, तो $|\alpha|$ बराबर है.............
मान लीजिए कि $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !} \mid$ तब योग $\frac{1}{2^{10}} \sum_{k=0}^{10}\left(\frac{10}{k}\right) k^2$ का मान किस अंतराल में होगा ?
यदि $\left(2 x ^3+\frac{3}{ x }\right)^{10}$ के द्धिपदीय प्रसार में $x$ की सभी धनात्मक सम घाती के गुणांको का योग $5^{10}-\beta \cdot 3^9$ है तब $\beta$ बराबर होगा-
यदि $x + y = 1$, तब $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ बराबर है
$\left(1-x-x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{7}$ का गुणांक है: