If $x^{2}-10 x+21=(x+m)(x+n)$ then $m+n=\ldots \ldots \ldots$
$10$
$7$
$21$
$-10$
Factorise :
$x^{2}+9 x+18$
Factorise the following:
$1-64 a^{3}-12 a+48 a^{2}$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=x^{3}-6 x^{2}+2 x-4, \quad g(x)=1-\frac{3}{2} x$
Factorise $: 4 x^{2}+4 x y-3 y^{2}$
Find the zeroes of the polynomial:
$p(x)=(x-2)^{2}-(x+2)^{2}$