Factorise :

$x^{2}+9 x+18$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In order to factorise $x^{2}+9 x+18,$ we have to find two numbers $p$ and $q$ such that $p+q=9$ and $p q=18.$

Clearly, $6+3=9$ and $6 \times 3=18.$

So, we write the middle term $9 x$ as $6 x +3$.

$\therefore$ $x^{2}+9 x+18=x^{2}+6 x+3 x+18$

$=x(x+6)+3(x+6)$

$=(x+6)(x+3)$

Similar Questions

Which of the following expressions is a polynomial, state the reason ? If an expression is polynomial, state whether it is a polynomial in one variable or not

$x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$

Factorise

$x^{3}+2 x^{2}-13 x+10$

Find $p(0), p(1), p(-2)$ for the following polynomials:

$p(x)=10 x-4 x^{2}-3$

Find the zeroes of the polynomial in each of the following:

$q(x)=2 x-7$

Expand the following:

$(-x+2 y-3 z)^{2}$