Factorise the following:

$1-64 a^{3}-12 a+48 a^{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$1-64 a^{3}-12 a+48 a^{2}=(1)^{3}-(4 a)^{3}-3(1)(4 a)(1-4 a)$

$=(1-4 a)^{3}\left[\because a^{3}-b^{3}-3 a b(a-b)=(a-b)^{3}\right]$

$=(1-4 a)(1-4 a)(1-4 a)$

Similar Questions

Find the value of the polynomial $x^{2}-7 x+12$ at.

$x=4$

$4 x^{2}+11 x-3$ is a $\ldots \ldots . .$ polynomial.

Find the value of each of the following polynomials at the indicated value of variables

$q(y)=5 y^{3}-4 y^{2}+14 y-\sqrt{3}$ at $y=2$

By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where

$p(x)=x^{3}-6 x^{2}+2 x-4, \quad g(x)=1-\frac{3}{2} x$

Classify the following as linear, quadratic or cubic polynomial

$x^{2}-9 x+14$