If $\left(\frac{2}{5}\right)^{5} \times\left(\frac{25}{4}\right)^{3}=\left(\frac{5}{2}\right)^{3 x-2},$ then find $x$.

  • A

    $11$

  • B

    $7$

  • C

    $3$

  • D

    $1$

Similar Questions

Fill in the blanks so as to make each of the following statements true (Final answer only)

$\sqrt{1 \frac{25}{144}}=\ldots \ldots$

Value of $(256)^{0.16} \times(256)^{\operatorname{0.09}}$ is

Fill in the blanks so as to make each of the following statements true (Final answer only)

$\sqrt{2} \cdot \sqrt{3} \cdot \sqrt{6}=\ldots \ldots .$

Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236,$ upto three places of decimal.

$\frac{\sqrt{10}-\sqrt{5}}{2}$

If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ and $y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}},$ then find the value of $x^{2}+y^{2}$.