Insert a rational number and an irrational number between the following:
$2.357$ and $3.121$
Find the value of $a$ :
$\frac{3-\sqrt{5}}{3+2 \sqrt{5}}=a \sqrt{5}-\frac{19}{11}$
prove that.
$\left(1^{3}+2^{3}+3^{3}+4^{3}+5^{3}\right)^{\frac{1}{2}}$ $=\left(1^{3}+2^{3}+3^{3}+4^{3}\right)^{\frac{1}{2}}+\left(5^{3}\right)^{\frac{1}{3}}$
Find the value
$(343)^{-\frac{2}{3}}$
Rationalise the denominator in each of the following
$\frac{4}{\sqrt{10}+\sqrt{6}}$