If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ and $y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}},$ then find the value of $x^{2}+y^{2}$.
$100$
$8$
$98$
$52$
Is $\sqrt{8+15}$ a rational number or an irrational number ?
For each question, select the proper option from four options given, to make the statement true : (Final answer only)
$\sqrt{5}+\sqrt{5}$ is a $/$ an $\ldots \ldots \ldots$ number.
The product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}$ equals
Simplify the following:
$\frac{2 \sqrt{3}}{3}-\frac{\sqrt{3}}{6}$
Simplify the following expressions
$(3+\sqrt{5})(4-\sqrt{11})$