If $p(x)=x^{2}-4 x+3,$ evaluate $: p(2)-p(-1)+p\left(\frac{1}{2}\right)$
$\frac{31}{4}$
$\frac{-30}{5}$
$\frac{-32}{4}$
$\frac{-31}{4}$
Without actually calculating the cubes, find the value of each of the following
$(31)^{3}-(16)^{3}-(15)^{3}$
Zero of the zero polynomial is
The factorisation of $4 x^{2}+8 x+3$ is
Factorise the following:
$1-64 a^{3}-12 a+48 a^{2}$
Write the following cubes in expanded form
$(4 x-3 y)^{3}$