If $x+y+z=0,$ show that $x^{3}+y^{3}+z^{3}=3 x y z$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since $x+y+z=0 $                      $\therefore x+y=-z$

or  $(x+y)^{3}=(-z)^{3}$             or $x^{3}+y^{3}+3 x y(x+y)=-z^{3}$

or  $x^{3}+y^{3}+3 x y(-z)=-z^{3}$      $[\because x+y=(-z)]$

or  $x^{3}+y^{3}-3 x y z=-z^{3}$    or $\left(x^{3}+y^{3}+z^{3}\right)-3 x y z=0$

or  $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$

Hence,            if $x+y+z=0,$ then $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$

Similar Questions

Find the zero of the polynomial : $p(x) = x + 5$

Factorise of the following :  $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$

Evaluate the following products without multiplying directly : $104 \times 96$

Factorise of the following : $27 y^{3}+125 z^{3}$

Use suitable identities to find the products : $(x+4)(x+10)$