If $x+y+z=0,$ show that $x^{3}+y^{3}+z^{3}=3 x y z$.
Since $x+y+z=0 $ $\therefore x+y=-z$
or $(x+y)^{3}=(-z)^{3}$ or $x^{3}+y^{3}+3 x y(x+y)=-z^{3}$
or $x^{3}+y^{3}+3 x y(-z)=-z^{3}$ $[\because x+y=(-z)]$
or $x^{3}+y^{3}-3 x y z=-z^{3}$ or $\left(x^{3}+y^{3}+z^{3}\right)-3 x y z=0$
or $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$
Hence, if $x+y+z=0,$ then $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$
Find the zero of the polynomial : $p(x) = x + 5$
Factorise of the following : $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
Evaluate the following products without multiplying directly : $104 \times 96$
Factorise of the following : $27 y^{3}+125 z^{3}$
Use suitable identities to find the products : $(x+4)(x+10)$