જો $x+y+z=0,$ તો સાબિત કરો કે $x^{3}+y^{3}+z^{3}=3 x y z$.
$x+y+z=0 $
$\therefore x+y=-z$
$\therefore $ $(x+y)^{3}=(-z)^{3}$ ($\because $ બંને બાજુ ઘન લેતા)
$\therefore $ $x^{3}+y^{3}+3 x y(-z)=-z^{3}$
$\therefore $ $\left(x^{3}+y^{3}+z^{3}\right)-3 x y z=0$
$\therefore $ $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$
આમ, $x+y+z=0,$ હોય તો $\left(x^{3}+y^{3}+z^{3}\right)=3 x y z$
ચકાસો : $2$ અને $0$ બહુપદી $x^{2}-2 x$ નાં શૂન્યો છે.
યોગ્ય નિત્યસમનો ઉપયોગ કરીને કિમંત મેળવો : $(102)^{3}$
યોગ્ય નિત્યસમનો ઉપયોગ કરીને વિસ્તરણ મેળવો : $(2 x-y+z)^{2}$
યોગ્ય નિત્યસમનો ઉપયોગ કરીને વિસ્તરણ મેળવો : $(-2 x+3 y+2 z)^{2}$
યોગ્ય નિત્યસમનો ઉપયોગ કરીને કિમંત મેળવો : $(998)^{3}$