Find the zero of the polynomial : $p(x) = x + 5$
$0$
$-5$
$5$
$4$
Without actually calculating the cubes, find the value of each of the following : $(-12)^{3}+(7)^{3}+(5)^{3}$
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $x^{2}+x$
$(ii)$ $x-x^{3}$
$(iii)$ $y+y^{2}+4$
Divide $p(x)$ by $g(x)$, where $p(x) = x + 3x^2 -1$ and $g(x) = 1 + x$.
Find the value of $k,$ if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.
Write the following cubes in expanded form : $\left[x-\frac{2}{3} y\right]^{3}$