Evaluate the following products without multiplying directly : $104 \times 96$
$9995$
$9444$
$9884$
$9984$
Write the following cubes in expanded form : $(2 a-3 b)^{3}$
Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=2 x^{3}+x^{2}-2 x-1$, $g(x)=x+1$.
Evaluate using suitable identities : $(999)^{3}$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=2 x+1, \,\,x=\frac{1}{2}$
Check whether the polynomial $q(t)=4 t^{3}+4 t^{2}-t-1$ is a multiple of $2 t+1$.