The product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}$ equals

  • A

    $\sqrt[12]{2}$

  • B

    $\sqrt{2}$

  • C

    $2$

  • D

    $\sqrt[12]{32}$

Similar Questions

If $\sqrt{2}=1.4142,$ then evaluate $\sqrt{5} \div \sqrt{10}$ correct to four decimal places.

Represent $3 . \overline{42}$ on the number line, using successive magnification, up to $4$ decimal places.

$\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to

For each question, select the proper option from four options given, to make the statement true : (Final answer only)

$\sqrt{5} \times \sqrt{5}$ is a / an $\ldots \ldots \ldots$ number.

Show that $0.1 \overline{6}=\frac{1}{6}$