The product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}$ equals
$\sqrt[12]{2}$
$\sqrt{2}$
$2$
$\sqrt[12]{32}$
If $\sqrt{2}=1.4142,$ then evaluate $\sqrt{5} \div \sqrt{10}$ correct to four decimal places.
Represent $3 . \overline{42}$ on the number line, using successive magnification, up to $4$ decimal places.
$\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to
For each question, select the proper option from four options given, to make the statement true : (Final answer only)
$\sqrt{5} \times \sqrt{5}$ is a / an $\ldots \ldots \ldots$ number.
Show that $0.1 \overline{6}=\frac{1}{6}$