If $a=5+2 \sqrt{6}$ and $b=\frac{1}{a},$ then what will be the value of $a^{2}+b^{2} ?$
$48$
$98$
$32$
$108$
If $\frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}}=a+b \sqrt{30},$ find the value of $a$ and $b$.
Visualise the representation of $2.6 \overline{4}$ on the number line up to $5$ decimal places, that is up to $2.64444$
Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236,$ upto three places of decimal.
$\frac{\sqrt{2}}{2+\sqrt{2}}$
If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.
Value of $(256)^{0.16} \times(256)^{\operatorname{0.09}}$ is