If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.
$3.921$
$0.7888$
$0.278$
$2.365$
The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to
Find the value
$64^{-\frac{1}{3}}\left(64^{\frac{1}{3}}-64^{\frac{2}{3}}\right)$
Prove that, $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1$
For each question, select the proper option from four options given, to make the statement true : (Final answer only)
$\frac{\sqrt{50}}{\sqrt{98}}$ is a $\ldots \ldots \ldots$ number.
Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$
$\frac{\sqrt{2}}{2+\sqrt{2}}$