If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.

  • A

    $3.921$

  • B

    $0.7888$

  • C

    $0.278$

  • D

    $2.365$

Similar Questions

The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to

Find the value

$64^{-\frac{1}{3}}\left(64^{\frac{1}{3}}-64^{\frac{2}{3}}\right)$

Prove that, $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1$

For each question, select the proper option from four options given, to make the statement true : (Final answer only)

$\frac{\sqrt{50}}{\sqrt{98}}$ is a $\ldots \ldots \ldots$ number.

Find the values of each of the following correct to three places of decimals, rationalising the denominator if needed and taking $\sqrt{2}=1.414$ $\sqrt{3}=1.732$ and $\sqrt{5}=2.236$

$\frac{\sqrt{2}}{2+\sqrt{2}}$