If $\frac{x}{y}+\frac{y}{x}=-1(x, y \neq 0),$ the value of $x^{3}-y^{3}$ is

  • A

    $1$

  • B

    $\frac{1}{2}$

  • C

    $-1$

  • D

    $0$

Similar Questions

Expand the following:

$\left(4-\frac{1}{3 x}\right)^{3}$

If both $x-2$ and $x-\frac{1}{2}$ are factors of $p x^{2}+5 x+r,$ show that $p=r$

Expand the following:

$(3 a-5 b-c)^{2}$

The following expressions are polynomials? Justify your answer:

$\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7$

If $p(x)=x^{2}-4 x+3,$ evaluate $: p(2)-p(-1)+p\left(\frac{1}{2}\right)$