Expand the following:
$\left(4-\frac{1}{3 x}\right)^{3}$
We have,
$\left(4-\frac{1}{3 x}\right)^{3}=(4)^{3}-\left(\frac{1}{3 x}\right)^{3}-3(4)\left(\frac{1}{3 x}\right)\left(4-\frac{1}{3 x}\right)$
$\left[\because(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\right]$
$=64-\frac{1}{27 x^{3}}-\frac{4}{x}\left(4-\frac{1}{3 x}\right)$
$=64-\frac{1}{27 x^{3}}-\frac{16}{x}+\frac{4}{3 x^{2}}$
Verify whether $3$ and $7$ are zeros of the polynomial $x^{2}-5 x-14$ or not.
Determine the degree of each of the following polynomials:
$y^{3}\left(1-y^{4}\right)$
Factorise the following quadratic polynomials by splitting the middle term
$6 x^{2}+19 x+10$
Which of the following expressions are polynomials in one variable and which are not $?$ State reason for your answer. If the given expression is a polynomial, state whether it is a polynomial in one variable or not
$x^{2}+2 x y+y^{2}$
Factorise
$49 x^{2}-42 x+9$