If $|\vec A \times \vec B| = \sqrt 3 \vec A.\vec B,$ then the value of$|\vec A + \vec B|$ is

  • [AIPMT 2004]
  • A

    ${\left( {{A^2} + {B^2} + \frac{{AB}}{{\sqrt 3 }}} \right)^{1/2}}$

  • B

    $A + B$

  • C

    ${({A^2} + {B^2} + \sqrt 3 AB)^{1/2}}$

  • D

    ${({A^2} + {B^2} + AB)^{1/2}}$

Similar Questions

Explain cross product of two vectors.

The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$

  • [NEET 2017]

If $\overrightarrow A = 3\hat i + \hat j + 2\hat k$ and $\overrightarrow B = 2\hat i - 2\hat j + 4\hat k$ then value of $|\overrightarrow A \times \overrightarrow B |\,$ will be

A particle moves in the $x-y$ plane under the action of a force $\overrightarrow F $ such that the value of its linear momentum $(\overrightarrow P )$ at anytime t is ${P_x} = 2\cos t,\,{p_y} = 2\sin t.$ The angle $\theta $between $\overrightarrow F $ and $\overrightarrow P $ at a given time $t$. will be $\theta =$ ........... $^o$

Given : $\vec A\, = \,2\hat i\, + \,p\hat j\, + q\hat k$ and $\vec B\, = \,5\hat i\, + \,7\hat j\, + 3\hat k,$ if $\vec A\,||\,\vec B,$ then the values of $p$ and $q$ are, respectively