A particle moves in the $x-y$ plane under the action of a force $\overrightarrow F $ such that the value of its linear momentum $(\overrightarrow P )$ at anytime t is ${P_x} = 2\cos t,\,{p_y} = 2\sin t.$ The angle $\theta $between $\overrightarrow F $ and $\overrightarrow P $ at a given time $t$. will be $\theta =$ ........... $^o$
$0$
$30$
$90$
$180$
If a vector $2\hat i + 3\hat j + 8\hat k$ is perpendicular to the vector $4\hat j - 4\hat i + \alpha \hat k$. Then the value of $\alpha $ is
For three vectors $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k})$, $\vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\overrightarrow{\mathrm{A}} \cdot(\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}})=0$, them value of $\mathrm{x}$ is. . . . . ..
Which of the following is not true ? If $\overrightarrow A = 3\hat i + 4\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ where $ A$ and $B$ are the magnitudes of $\overrightarrow A $ and $\overrightarrow B $
Show that $a \cdot( b \times c )$ is equal in magnitude to the volume of the parallelepiped formed on the three vectors, $a, b$ and $c$.
Find the angle between two vectors with the help of scalar product.