यदि $X$ और $Y$ दो ऐसे समुचचय हैं कि $n( X )=17, n( Y )=23$ तथा $n( X \cup Y )=38,$ तो $n( X \cap Y )$ ज्ञात कीजिए
It is given that:
$n(X)=17, n(Y)=23, n(X \cup Y)=38$
We know that:
$n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)$
$\therefore 38=17+23-n(X \cap Y)$
$\Rightarrow n(X \cap Y)=40-38=2$
$\therefore n(X \cap Y)=2$
दो समुच्चय $A, B $ विसंघित हैं, यदि और केवल यदि
यदि $A =\{3,6,9,12,15,18,21\}, B =\{4,8,12,16,20\}$ $C =\{2,4,6,8,10,12,14,16\}, D =\{5,10,15,20\} ;$ तो निम्नलिखित को ज्ञात कीजिए
$D - C$
निम्नलिखित में से प्रत्येक समुच्चय युग्म का सम्मिलन ज्ञात कीजिए
$X=\{1,3,5\}$ $Y =\{1,2,3\}$
दिखलाइए कि $A \cap B = A \cap C$ का तात्पर्य $B = C$ आवश्यक रूप से नहीं होता है।
यदि $A, B$ और $C$ तीन ऐसे समुच्चय $( sets )$ हैं जिनके लिए $A \cap B=A \cap C$ एवं $A \cup B=A \cup C,$ तब