दो समुच्चय $A, B $ विसंघित हैं, यदि और केवल यदि
$A \cup B = \phi $
$A \cap B \ne \phi $
$A \cap B = \phi $
$A - B = A$
यदि समुच्चय $A$ और $B$ निम्न प्रकार से परिभाषित हैं
$ A = \{ (x,\,y):y = \frac{1}{x},\,0 \ne x \in R\} $
$B = \{ (x,\,y):y = - x,\,\,x \in R\} $, तब
किन्हीं दो समुच्चयों $A$ तथा $B$ के लिए सिद्ध कीजिए कि,
$A=(A \cap B) \cup(A-B)$ और $A \cup(B-A)=(A \cup B)$
यदि $A, B, C$ तीन समुच्चय इस प्रकार हैं कि $A \cup B = A \cup C$ तथा $A \cap B = A \cap C$, तब
यदि $X=\left\{4^{n}-3 n-1: n \in N\right\}$ तथा $Y=\{9(n-1): n \in N\}$ हैं, जहाँ $N$, प्राकृत संख्याओं का समुच्चय है, तो $X \cup Y$ बराबर है :
यदि $X$ और $Y$ दो ऐसे समुच्चय हैं कि $X \cup Y$ में $50$ अवयव हैं, $X$ मे $28$ अवयव हैं और $Y$ में $32$ अवयव हैं, तो $X \cap Y$ में कितने अवयव हैं ?