वास्तविक गुणांक वाले बहुपद $g ( x )$ के लिये, माना $g ( x )$ के विभिन्न वास्तविक मूलों की संख्या $m _{ g }$ से दर्शाते है। माना वास्तविक गुणांक वाले बहुपदों का समुच्चय $S$ है जो
$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\}$ द्वारा परिभाषित है। बहुपद $f$ के लिये, माना $f^{\prime}$ तथा $f^{\prime \prime}$ क्रमशः इसके प्रथम तथा द्वितीय कोटि अवकलज है। तब $\left( m f^{\prime}+ m f^{\prime \prime}\right)$, जहाँ $f \in S$ का न्यूनतम संभव मान होगा
$5$
$8$
$9$
$10$
माना अन्तराल $(-2,2)$ में $f$ तथा $g$ दो बार अवकलनीय समफलन इस प्रकार है कि $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ तथा $g\left(\frac{3}{4}\right)=0, g(1)=2$ है। तब अन्तराल $(-2,2)$ में $f$ (x) $g ^{\prime \prime}( x )+ f ^{\prime}( x ) g ^{\prime}( x )=0$ के हलों की न्यूनतम संख्या है।
फलन $f(x)$ मध्यमान प्रमेय की सभी शर्तो को अंतराल $ [0, 2] $ में सन्तुष्ट करता है। यदि $ f (0) = 0 $ और अंतराल $ [0, 2] $ में $x $ के सभी मानों के लिये $|f'(x)|\, \le \frac{1}{2}$, तब
फलन $x + \frac{1}{x},x \in [1,\,3]$ के लिए मध्यमान प्रमेय में $c$ का मान है
यदि $f(x) = \cos x,0 \le x \le \frac{\pi }{2}$, तो मध्यमान प्रमेय की वास्तविक संख्या $ ‘c’$ है
फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में $c$ का मान होगा