Conjugate of $1 + i$ is
$i$
$1$
$1 -i$
$1 + i$
If $a > 0$ and $z = \frac{{{{\left( {1 + i} \right)}^2}}}{{a - i}}$, has magnitude $\sqrt {\frac{2}{5}} $, then $\bar z$ is equal to:
For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if
If $\bar z$ be the conjugate of the complex number $z$, then which of the following relations is false
Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$
For any complex number $w = c + id$, let $\arg ( w ) \in(-\pi, \pi]$, where $i =\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying arg $\left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair $( x , y )$ lies on the circle
$x^2+y^2+5 x-3 y+4=0 .$
Then which of the following statements is (are) TRUE?
$(A)$ $\alpha=-1$ $(B)$ $\alpha \beta=4$ $(C)$ $\alpha \beta=-4$ $(D)$ $\beta=4$