$\frac{{1 + \sin A - \cos A}}{{1 + \sin A + \cos A}} =$
$\sin \frac{A}{2}$
$\cos \frac{A}{2}$
$\tan \frac{A}{2}$
$\cot \frac{A}{2}$
The angle subtended at the centre of a circle of radius $3$ metres by an arc of length $1$ metre is equal to
$\frac{{\sin \theta }}{{1 - \cot \theta }} + \frac{{\cos \theta }}{{1 - \tan \theta }} = $
If $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ and $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ then ${(m + n)^{2/3}} + {(m - n)^{2/3}}$ is equal to
Find the value of $\tan \frac{13 \pi}{12}$
The value of ${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + ... + $ ${\sin ^2}{85^o} + {\sin ^2}{90^o}$ is equal to