જો $x$ ત્રીજા ચરણમાં હોય અને $\cos x=-\frac{3}{5},$ તો બાકીનાં પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો.
since $\cos x=-\frac{3}{5},$ we have sec $x=-\frac{5}{3}$
Now $\sin ^{2} x+\cos ^{2} x=1, \text { i.e., } \sin ^{2} x=1-\cos ^{2} x $
or $\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$
Hence $\quad \sin x=\pm \frac{4}{5}$
since $x$ lies in third quadrant, $\sin x$ is negative. Therefore
$\sin x=-\frac{4}{5}$
which also gives
${\cos ec}\, x=-\frac{5}{4}$
Further, we have
$\tan x=\frac{\sin x}{\cos x}=\frac{4}{3} \text { and } \cot x=\frac{\cos x}{\sin x}=\frac{3}{4}$
$2({\sin ^6}\theta + {\cos ^6}\theta ) - 3({\sin ^4}\theta + {\cos ^4}\theta ) + 1 =$
મૂલ્ય શોધો. $\cos ec \left(-1410^{\circ}\right)$
જો $\tan \theta = \frac{{20}}{{21}},$ cos$\theta$ મેળવો.
જો $\sin \theta = \frac{{24}}{{25}}$ અને $\theta $ એ દ્રીતીય ચરણ માં હોય તો $\sec \theta + \tan \theta = $
જો ${\tan ^2}\alpha {\tan ^2}\beta + {\tan ^2}\beta {\tan ^2}\gamma + {\tan ^2}\gamma {\tan ^2}\alpha $ $ + 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma = 1,$ તો ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma =.........$