$\tan \frac{13 \pi}{12}$ નું મૂલ્ય શોધો.
We have
$\tan \frac{{13\pi }}{{12}} = \tan \left( {\pi + \frac{\pi }{{12}}} \right)$
$ = \tan \frac{\pi }{{12}} = \tan \left( {\frac{\pi }{4} - \frac{\pi }{6}} \right)$
$ = \frac{{\tan \frac{\pi }{4} - \tan \frac{\pi }{6}}}{{1 + \tan \frac{\pi }{4}\tan \frac{\pi }{6}}}$
$ = \frac{{1 - \frac{1}{{\sqrt 3 }}}}{{1 + \frac{1}{{\sqrt 3 }}}} = \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
$= 2 - \sqrt 3 $
સાબિત કરો કે, $3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1$
સાબિત કરો કે : $2 \sin ^{2} \frac{\pi}{6}+\cos ec ^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}$
$(m + 2)\sin \theta + (2m - 1)\cos \theta = 2m + 1,$ જો . . .
જો $\tan \theta = \frac{{x\,\sin \,\phi }}{{1 - x\,\cos \,\phi }}$ અને $\tan \,\phi = \frac{{y\sin \,\theta }}{{1 - y\,\cos \,\theta }}$, તો $\frac{x}{y} = $
$\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + ..... + \cos 180^\circ = $