જો $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$ હોય, તો સાબિત કરો કે $|2 A|=4|A|$.
The given matrix is $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$
$\therefore 2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
$\begin{aligned} L H S:|2 A| &=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right| \\ &=2 \times 4-4 \times 8 \\ &=8-32=-24 \end{aligned}$
Now, $|A|=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=1 \times 2-2 \times 4=2 \times 8=-6$
$R H S: 4|A|=4 \times(-6)=-24$
$\therefore L. H. S.=\therefore \mathrm{R.} \mathrm{H.} \mathrm{S}$
સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.
$\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right| \ne . . . .$
જો સુરેખ સમીકરણ સંહિતા
$x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
માટે શૂન્યેતર ઉકેલ $(x, y, z)$ જ્યાં $k \in R$ હોય તો $x +\left(\frac{ y }{ z }\right)$ ની કિમત મેળવો
શૂન્યતર $a,b,c$ માટે જો $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, તો $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = . . $
નિશ્ચાયક $\Delta=\left|\begin{array}{rrr}1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0\end{array}\right|$ નું મૂલ્ય મેળવો.