If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right],$ then show that $|2 A|=4|A|$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given matrix is $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$

$\therefore 2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$

$\begin{aligned} L H S:|2 A| &=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right| \\ &=2 \times 4-4 \times 8 \\ &=8-32=-24 \end{aligned}$

Now, $|A|=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=1 \times 2-2 \times 4=2 \times 8=-6$

$R H S: 4|A|=4 \times(-6)=-24$

$\therefore L. H. S.=\therefore \mathrm{R.} \mathrm{H.}  \mathrm{S}$

Similar Questions

Statement $-1$ : The system of linear equations

$x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$

$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$

$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$

has a non-trivial solution for only one value of $\alpha $ lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$ 

Statement $-2$ : The equation in $\alpha $

$\left| {\begin{array}{*{20}{c}}
  {\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\ 
  {\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\ 
  {\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha } 
\end{array}} \right| = 0$

has only one solution lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$

  • [JEE MAIN 2013]

How many values of $k $ , systeam of linear equations $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y$$ = 3k - 1$ has no solutions.

  • [IIT 2002]

The equation $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{{{(1 - x)}^2}}&{ - \,(2 + {x^2})}\\{2x + 1}&{3x}&{1 - 5x}\\{x + 1}&{2x}&{2 - 3x}\end{array}} \right|$ $+$ $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{2x + 1}&{x + 1}\\{{{(1 - x)}^2}}&{3x}&{2x}\\{1 - 2x}&{3x - 2}&{2x - 3}\end{array}} \right|$ $= 0$

Suppose $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ and $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, then

The system of linear equations $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ has

  • [JEE MAIN 2020]