यदि $a _{1}, a _{2}, a _{3}, \ldots .$ एक समान्तर श्रेणी में इस प्रकार हैं कि $a _{1}+ a _{7}+ a _{16}=40$ है, तो इस समान्तर श्रेणी के प्रथम $15$ पदों का योगफल है

  • [JEE MAIN 2019]
  • A

    $200$

  • B

    $280$

  • C

    $150$

  • D

    $120$

Similar Questions

यदि तीन संख्यायें गुणोत्तर श्रेणी में हैं, तो उनके लघुगुणक (Logarithms) होंगे

एक समांतर श्रेणी में $15$ पद हैं। इसका पहला पद $5$ है तथा योग $390$ है। मध्य पद है

माना समांतर श्रेढी $3,7,11, \ldots \ldots$ के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$ है, तो $\mathrm{n}$ बराबर है .............

  • [JEE MAIN 2024]

माना श्रेणी ${a_1},{a_2},{a_3},.............{a_{2n}}$ एक समान्तर श्रेणी है, तब $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $

यदि $a$ और $b$के बीच का समान्तर माध्य $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$है, तो $n$  का मान होगा