If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is
$200$
$280$
$150$
$120$
If $a_1 , a_2, a_3, . . . . , a_n, ....$ are in $A.P.$ such that $a_4 - a_7 + a_{10}\, = m$, then the sum of first $13$ terms of this $A.P.$, is .............. $\mathrm{m}$
Find the $25^{th}$ common term of the following $A.P.'s$
$S_1 = 1, 6, 11, .....$
$S_2 = 3, 7, 11, .....$
Let $S_{n}$ denote the sum of first $n$-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $\mathrm{S}_{20}-\mathrm{S}_{6}$ is equal to :
Shamshad Ali buys a scooter for $Rs$ $22000 .$ He pays $Rs$ $4000$ cash and agrees to pay the balance in annual instalment of $Rs$ $1000$ plus $10 \%$ interest on the unpaid amount. How much will the scooter cost him?
Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,
. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . .