If $[x]$ denotes the greatest integer $ \leq x$, then the system of linear equations
$[sin \,\theta ] x + [-cos\,\theta ] y = 0$
$[cot \,\theta ] x + y = 0$
have infinitely many solutions if $\theta \in \left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)$ and and has a unique solution if $\theta \in \left( {\pi ,\frac{{7\pi }}{6}} \right)$
have infinitely many solutions if $\theta \in \left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right) \cup \left( {\pi ,\frac{{7\pi }}{6}} \right)$
has a unique solution if $\theta \in \left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)$ and and have infinitely many solutions if $\theta \in \left( {\pi ,\frac{{7\pi }}{6}} \right)$
has a unique solution if $\theta \in \left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right) \cup \left( {\pi ,\frac{{7\pi }}{6}} \right)$
Consider the system of linear equations
$-x+y+2 z=0$
$3 x-a y+5 z=1$
$2 x-2 y-a z=7$
Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then
The existence of the unique solution of the system $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ depends on
If $D(x) =$ $\left| {\begin{array}{*{20}{c}}{x - 1}&{{{(x - 1)}^2}}&{{x^3}}\\{x - 1}&{{x^2}}&{{{(x + 1)}^3}}\\x&{{{(x + 1)}^2}}&{{{(x + 1)}^3}}\end{array}} \right|$ then the coefficient of $x$ in $D(x)$ is
The system of equations $kx + y + z =1$ $x + ky + z = k$ and $x + y + zk = k ^{2}$ has no solution if $k$ is equal to