If $D(x) =$ $\left| {\begin{array}{*{20}{c}}{x - 1}&{{{(x - 1)}^2}}&{{x^3}}\\{x - 1}&{{x^2}}&{{{(x + 1)}^3}}\\x&{{{(x + 1)}^2}}&{{{(x + 1)}^3}}\end{array}} \right|$ then the coefficient of $x$ in $D(x)$ is
$5$
$-2$
$6$
$0$
If $\omega$ is one of the imaginary cube roots of unity, then the value of the determinant $\left| {\begin{array}{*{20}{c}}1&{{\omega ^3}}&{{\omega ^2}}\\ {{\omega ^3}}&1&\omega \\{{\omega ^2}}&\omega &1\end{array}} \right|$ $=$
$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
The system of equations $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $, has no solution for
If the system of equations
$2 x+y-z=5$
$2 x-5 y+\lambda z=\mu$
$x+2 y-5 z=7$
has infinitely many solutions, then $(\lambda+\mu)^2+(\lambda-\mu)^2$ is equal to
If ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, then ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $