If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to
Consider the system of linear equations
$-x+y+2 z=0$
$3 x-a y+5 z=1$
$2 x-2 y-a z=7$
Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then
Evaluate $\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$
The cubic $\left| {\begin{array}{*{20}{c}}
0&{a - x}&{b - x} \\
{ - a - x}&0&{c - x} \\
{ - b - x}&{ - c - x}&0
\end{array}} \right| = 0$ has a reperated root in $x$ then,
For what value of $\lambda $, the system of equations $x + y + z = 6,x + 2y + 3z = 10,$ $x + 2y + \lambda z = 12$ is inconsistent $\lambda =$ ........