If $z$ and $w$ are two complex numbers such that $|zw| = 1$ and $arg(z) -arg(w) =\frac {\pi }{2},$ then

  • [JEE MAIN 2019]
  • A

    $\bar zw\,\, = \,i$

  • B

    $z\bar w\,\, = \,\frac{{ - 1 + i}}{{\sqrt 2 }}$

  • C

    $z\bar w\,\, = \,\frac{{1 - i}}{{\sqrt 2 }}$

  • D

    $\bar zw\,\, =  - \,i$

Similar Questions

Modulus of $\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ is

If $z$ is a complex number such that $\frac{{z - 1}}{{z + 1}}$ is purely imaginary, then

If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.

  • [JEE MAIN 2022]

Let $z_1, z_2 \in C$ such that $| z_1 + z_2 |= \sqrt 3$ and $|z_1| = |z_2| = 1,$ then the value of $|z_1 - z_2|$ is

The real value of $\theta$ for which the expression $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ is a real number is $\left( {n \in I} \right)$